Solids, Liquids, and Gases

Kinetic Theory Section 1

A. .		of matter—solid, liquid, gas
	1.	theory—explains how particles in matter behave
		a. All matter is composed of small
		b. Particles are in constant, random
		c. Particles with each other and walls of their containers.
2	2.	
		vibrate in place
3	3.	Average kinetic energy— of the substance, or how fast the
		particles are moving; the lower the temperature, the slower the particle motion
4	1.	state—particles are closely packed together in a specific type of
		geometric arrangement.
5	5.	state—a solid begins to liquefy at the melting point as the particles
		gain enough energy to overcome their ordered arrangement.
		a. Energy required to reach the melting point is called the heat of
		b. Liquid particles have more space between them, allowing them to flow and take the
		shape of their container.
6	j.	state—a liquid's particles have enough energy to escape the attractive
		forces of the other particles in the liquid
		a. Heat of is the energy required for a liquid to change to a gas.
		b. At the, the pressure of a liquid's vapor is equal to the
		pressure of the atmosphere, and the liquid becomes a gas.
		c. Gas particles spread evenly throughout their container in the process
		of
7	•	Heating curve of a liquid—as a solid melts and a liquid vaporizes, the temperature remains
		; the temperature will increase after the attractive forces of the earlier
		state have been overcome.
8	• ,	—state of matter consisting of high-temperature gas with balanced
		positively and negatively charged particles.

Note-taking Worksheet (continued)

В.	_	expansion—increase in the size of a substance when the temperature
	in	creases
	1.	The size of a substance will then when the temperature decreases.
	2.	Expansion and contraction occur in solids, liquids, and gases.
	3.	is an exception because it expands as it becomes a solid.
C.	So	me substances do not react as when changing states.
	1.	solids—lack the tightly ordered structure found in crystals
		a. Do not have definite temperature at which they change from solid to liquid
		b. Glass, plastic
	2.	crystals do not lose their ordered arrangement completely upon
		melting; used in liquid crystal in watches, clocks, calculators, and
		some notebook computers.
Se	cti	on 2 Properties of Fluids

A.	·	ability of a fluid (liquid or gas) to exert an upward force on an object
	im	mersed in it
	1.	An object in a fluid will if its weight is less than the buoyant force acting
		on it from the fluid.
	2.	An object in a fluid will if its weight is more than the buoyant force acting
		on it from the fluid.
	3.	principle—buoyant force on an object is equal to the weight of
		the fluid displaced by the object.
	4.	An object will float if its is less than the density of the fluid it is placed in
В.		principle—pressure applied to a fluid is transmitted throughout the fluid
	1.	Pressure is exerted per unit area.
	2.	machines use this principle to lift heavy loads.
C.		principle—as the velocity of a fluid increases, the pressure exerted
		the fluid decreases; airplanes use this principle to fly.

temperature increases, pressure increases

Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

Note-taking Classification of Matter

Composition of Matter Section 1

A	•	either an element or a compound
	1.	When all the atoms in a substance are alike, the substance is an
		A is a substance with two or more elements combined in a
		fixed proportion.
В.	Tv	vo or more substances that can be easily separated by physical means
	fo	rm a
	1.	mixture—mixture of different and easily distinguishable materials
	2.	mixture—contains two or more gaseous, liquid, or solid sub-
		stances blended evenly; also called a solution
	3.	—heterogeneous mixture with larger particles that never settle;
		colloids scatter light in the Tyndall effect
	4.	A heterogeneous mixture containing a liquid in which visible particles settle is
		called a
Ç,	c+i	on 2 Properties of Matter
Α.		—characteristics of a material which can be observed without
		anging the identity of the substances in the material; examples include color, shape, size,
		elting point, and boiling point
	1.	—physical description of a substance
	2.	—how a substance acts; for example, magnetism, viscosity, ductility
	3.	Physical properties such as size and magnetism can be used to
		mixtures.
В.		—change in a substance's size, shape, or state of matter
	1.	Substance does not change when it undergoes a physical change
		is a process for separating a mixture by evaporating a liquid
		and condensing its vapor.

Note-taking Worksheet (continued)

C. _____ property—characteristics of a substance indicating that it can change chemically; for example, flammability or light sensitivity of a substance **D.** When one substance changes to another substance, a _____ has occurred. 1. Some chemical changes are indicated by _____ change, smell, or bubble formation. 2. Other chemical changes occur very slowly, such as the formation of 3. Chemical changes can be used to ______ substances such as metals from their ores. of Earth's surface involves both physical and chemical changes. _____big rocks split into smaller ones; streams carry rock particles from one location to another 2. _____Chemical changes can occur in rocks when calcium carbonate in limestone changes to calcium hydrogen carbonate due to acid rain.

F. Law of ________Mass of all substances present

before a chemical change equals the mass of all substances after the change.